温度
目录
引证解释
1.冷热的程度。冰心《姑姑·分》:“你将永远是花房里的一盆小花,风雨不侵的在划一的温度之下,娇嫩的开放着。”《小说选刊》1981年第8期:“小兄弟,不能光讲风度,忘记温度,要穿厚实一些。”
粒子对撞机
2.指热度。老舍《离婚》第二十:“夏天顶好不去拜访亲友,特别是胖人。可是吴太太必须出来寻亲问友,好像只为给人家屋里增加些温度。”
基本概念
基本介绍
温度它直接受日射所影响:日射越多,气温越高。温度的概念对于人们来说并不陌生,但通常人们只是将它作为物质的某种属性之一。温度的概念来源于人们对外界物质世界的感觉,通常表示外界物质本身属性的某种存在状态。使温度概念得以较为精确表述的是分子运动论在热学领域的建立,这样就将物质的整体存在状态化归到物质的小分子间的运动形式的整体组合中。同时,也给温度的概念赋予了新的含义。但是,这种将温度的属性化归到物质运动的本身,并没有改变人们对温度的观念。现在人们对温度的看法仍然脱离不开物质本身属性的范畴,(温度虽然在科学中得到一个确切的定义方法,但是人们日常生活中的习惯与分子的运动完全是两个世界)不仅仅是在人们的生活中,在科学中也是如此。这种现象被描述为一个物体的热势,或能量效应。当以数值表示温度时,即称之为温度度数。值得注意的是,少数几个分子甚至是一个分子构成的系统,由于缺乏统计的数量要求,是没有温度的意义的。大气层中气体的温度是气温,是气象学常用名词。
温度在科学中的概念没有划归到物质运动最直接的形式,是因为传统物理科学体系中温度和其它物理概念间存在的逻辑关系。物理概念在整个科学体系中不是孤立的,而是是相互间存在连带关系。一种物理概念的改变,必然伴随相关科学概念间的定义存在相应的改变。科学一直是在继承性的发展,即使到今天,我们所接受的物理科学体系也是建立在前人所论证的基础上。
和温度概念直接相关联的物理概念是能量的概念。尤其是分子运动论的建立,加剧了温度和能量间的联系。自从一个半世纪以来由于工业xxx所带来的对化学能源的使用加剧,也同时加剧了化学能源和机械动力间的关系,其中温度就在这期间担当了一个非常重要的角色;即能源和动力间的转换。这一领域在一个半世纪以前就开始了,比较有名的是焦耳先生所作的证明机械能和热能间转换关系的焦耳试验。
概念介绍
虽然温度来源于对物质温度的感觉,这起因于微观物质的运动所给与感官的作用。对于物体、气体,近代物理科学的发展已经告诉我们,这种温度的感觉来源于物质分子给与感官碰撞的作用,温度高于我们感官的物体,其给与我们热的感觉,这来源于较热的物体对外的辐射而给与外界物质的较强的相互作用。将温度的概念赋予物质运动变化的本身,是符合物质运动变化的规律的,同时,对外界物质的温度现象是吻合的。常规物理体系中,通常将温度的概念和物体分子的动能联系起来,认为物质的温度和分子的动能成正比。这样解释是很难合乎逻辑的。不可信的一种逻辑原因如下:
首先,没有理由怀疑牛顿第三定律,即:作用力和反作用力定律,在物质相互作用过程中,作用力必然大小相等、方向相反。不同质量的分子,在同一温度下如果动能相同,则动量必然不同。如果混合在一起,经过一段时间的碰撞后,两种分子的温度我们将不好判断它们的温度。这是因为,在不同质量的分子碰撞过程中,不管分子最初的运动状态如何,混合以后,两种不同分子的运动状态将趋向于平均动量相等。这一点是由牛顿第三运动定律决定的,那么,动能相同的两种不同质量的分子,(1/2)mv2作为动能的形式,其质量大的分子其动量必然要大于质量小的分子的动量。这样两种分子混合以后,由于必须遵守作用力反作用力的规律,动能较大的分子,在两种分子混合后其动能必然增加,或者说其当量温度相对来说要高。这样我们就可以得出一个结论,可燃气体如果和质量比它大的分子混合,其燃点温度必然降低,反之,其燃点温度数值必然要增加。这样的结论似乎还没有出现,虽然两种气体分子在混合后燃点会发生变化,形成这种固定的规律似乎还没有。如果动能和温度间的关系正确,那么这种推论也应该成立。
另一方面,如何去定义混合气体的温度与分子运动速度的关系,我们不能采用平均动能的方式去定义,这是因为,混合后的气体在碰撞一段时间以后,两种分子的平均动量会趋向于相等,质量较轻的气体分子其动能会大于质量较重的气体分子的动能,这样,根据动能和分子运动速度的关系,该如何确定它们之间的关系呢?如果将温度的概念归因于物质的运动本身,对于同一物体,一个确定的温度必然对应予一确定的物质存在状态并表现在微观物质分子运动的本身。如果运动状态采用运动来衡量的话,(为了便于说明问题,这里我采用气体来说明)那么,微观物质运动xxx的区别就在于物质分子的平均速度,一个确定的温度必然对应与物质微观分子确定的平均运动速度。科学已经确定,气体分子是通过运动中不断的碰撞来实现气体分子在空间中的分布规律。如果气体的温度和气体分子的平均动能成正比,那么在碰撞过程中质量不同的分子通过碰撞后其动量交换也不同,但是碰撞动量交换的结果是两种不同的分子其平均动量趋向于相等。采用动能和温度成正比的关系不能处理这一问题。如果考虑两个分子质量不同的物体,或者一种气体分子和固体间在温度相同时的能量间的交换状态,如果气体分子的质量远大于固体分子间的质量,或者气体分子的质量远小于固体分子间的质量,那么,在温度相同时,气体和固体之间必然发生能量交换,其交换的结果是质量大的分子碰撞后其运动速度(或者震动速度)必然会降低,质量小的分子碰撞后其速度会增加,如果两种分子处于同一温度下,那么,能量就会发生定向的传递。很显然,这和日常生活中的事实不符。根据如上的分析,传统物理学中的温度定义存在很大的问题。关于这一部分内容,您可以参阅机械运动能量体系中关于此的看法。一种比较不错的定义方法是采用物质分子的动量作为能量的单位,并定义,物质的温度和分子的运动速度成正比。这样的定义方法在物质运动的变化上处理问题,是很方便的。但是,仍然要提醒一点的是,这样的定义,能量守恒和转化定律必然要被放弃。
历史看法
探索发现
温标分类
为了定量地进行温度的测量,首先必须确定温度的数值表示方法,然后以此为根据对温度计进行刻度。温度的数值表示法叫做温标。所谓数值表示法包括两个方面:一是确定温度数值大小的依据;二是标度方法。具体说来又包含以下三个要素:
xxx,选定测温物质及其测温属性,此属性用数值表示即某种物质的测温参量X(如铂的电阻;热电偶的温差电动势等。)
第二,确定测温参量与温度之间的关系(在尚未确立任何温标之前,这种关系只是在一定经验的基础上作出的假定关系)。例如确定为线性关系
t=aX+b(2.1)
(2.1)式中的a、b需要由所取的两个标准温度点的数值确定;又如确定温度与测温参量间为正比关系
T=aX(2.2)(2.2)
式中的a只由一个标准温度点即可确定。
第三,确定标准温度点并规定其数值,此即标度方法。
以上三个要素实际包括了五个方面的内容即:测温质;测温性质(测温参量);温度与测温参量间的关系;标准温度点;标准温度点的数值。任何一种温标,在这五个方面都有确定的内容(除热力学温标不涉及测温质外),改变其中的任何一条就成为另一种温标。但是由于一种温标的名称不可能把建立该种温标的所有因素都表达出来,加上一些书籍在介绍温标的种类时没有严格按照概念划分的原则(如在每次划分时只能根据同一标准),而是把按不同标准划分的不同温标一起并列起来,这就容易使人分不清温标究竟有几种;各种温标的区别以及它们之间的联系是什么。
现将各种温标分类介绍如下:
按标度法
(即三要素的第三条)不同分为:
①华氏温标
由华伦海特(Fahrenheit1686──1736荷兰)于1714年建立。他最初规定氯化铵与冰的混合物为0°F;人的体温为100°F。后来规定在标准状态下纯水与冰的混合物为32°F;水的沸点为212°F。两个标准点之间均匀划为180等分,每份为1°F。
②列氏温标
由列奥缪尔(Reaumur1685──1757法国)于1740年建立。他将水的冰点定为0°R;将酒精体积改变千分之一的温度变化为1°R。这样,水的沸点为80°R。
③摄氏温标
由摄尔修斯(Celsius1710──1744瑞典)于1742年建立。最初,他将水的冰点定为100°C;水的沸点定为0°C,后来他接受了瑞典科学家林列的建议,把两个温度点的数值对调了过来。(1960年国际计量大会对摄氏温标作了新的定义,规定它由热力学温标导出。摄氏温度(符号t)的定义为t/°C=T/K-273.15。)
④开氏温标
由开尔文(LordKelvin1824──1907英国)于1848年建立。1954年国际计量大会规定水的三相点的温度为273.16K。(这个数值的规定有其历史的原因i)为了使开尔文温标每一度的温度间隔与早已建立并广为使用的摄氏标度法每一度的间隔相等;ii)按理想气体温标,通过实验并外推得出理想气体的热膨胀率为1/273.15。由此确定-273.15°C为xxx温度的零度,而冰点的xxx温度为273.15K;iii)将标准温度点由水的冰点改为水的三相点(相差0.01°C)时,按理想气体温标确定的水的三相点的温度就确定为273.16K。)
按测温
温度变送器
(包括测温质,测温参量X及其与温度间的关系)的不同分
①经验温标
利用某一特定测温物质的某特定测温属性随温度的变化关系而确定的温标,习惯上常称为某某温度计。如水银温度计,酒精温度计,铂电阻温度计,定容氢气温度计等。
一般说来,按同一标度法(如开氏)但用不同测温质的同一测温参量(如规定铜──康铜温差电偶其温差电动势与温度T成正比;铜—钢温差电偶其温差电动势与温度T成正比);或同一物质不同测温参量(如水银的体积与温度T成正比;水银的电阻与T成正比);或不同测温质不同测温参量(如铜—康铜开氏标度法;铂电阻开氏标度法)所建立的不同温标制成的不同的温度计,去测量同一待测系统、同一平衡态的温度时,它们的读数并不严格一致。这是因为不同物质的不同属性随温度的变化关系并不相同。因此,我们规定某一测温质的测温属性随温度变化为正比关系而建立起一种经验温标,再用按这种温标做成的温度计去测量其它测量属性随温度的变化关系,它就一般不再是正比关系了。然而我们在建立不同温标时,却又分别规定它们与温度成正比关系。这样制成的各个温度计必然会造成读数上的差别。例如用铜—康铜(开氏标度法)温度计和铂电阻(开氏标度法)温度计,同时去测氮的正常沸点,前者的读数为32K而后者为54.5K。这个问题,对度量衡而言是一个严重的问题。为寻求理想的标准温标(不因测温质、测温参量不同而读数出现差异)经历了由经验温标──半理论性温标──理论性温标的漫长过程。
②半理论性温标──理想气体温标
理想气体温标的建立,几乎所有普通物理教材中都有详细介绍,故在此不再赘述。
理想气体温标比起经验温标,其优点在于它与任何气体的任何特定性质无关。不论用何种气体,在外推到压强为零时,由它们所确定的温度值都一样。但是,理想气体温标毕竟还要依赖于气体的共性,对极低温度(氦气在低于1.01×10Pa的蒸汽压下的沸点1K以下)和高温(1000°C以上)不适用。并且,理想气体温标在具体操作上也不够便捷。
③理论温标──热力学温标
我们在此也不再重述热力学温标建立的过程。众所周知,在热力学温标中,热量Q起着测温参量的作用,然而比值Q1/Q2(Q1为可逆机从高温热源吸收的热量;Q2为可逆机向低温热源放出的热量)并不依赖于任何物质的特性。因此,热力学温标与测温物质无关。
当然,任何一种温标都必须是某种测量依据与某种标度法的结合。一般地说,任何一种标度法可以用于不同的测温质的某种测温参量。如水银摄氏温度计,酒精摄氏温度计;任何一种测温参量也可以采用不同的标度法。如理想气体开尔文温标,理想气体摄氏温标。但是以热量Q为测温参量的热力学温标,其标度法只取开氏标度法,所依据的是热力学第二定律,这是它与其它温标根本不同之点。
(3)协议性温标
热力学温标是不依赖任何具体测温物质及其测温属性的温标,当然是最理想的温标。但是,我们无法制造出可逆热机,因而无法测出可逆热机从高温热源吸收的热量与向低温热源放出热量之比。但是当理论上证明了,选用开尔文标度法,按热力学温标测定的温度与按理想气体温标测定的温度相同时,就可以用理想气体温标来实现热力学温标。
但是,由于由理想气体温标测温程序繁复,极不方便快捷,并有一定的适用范围。国际计量大会曾多次开会讨论制定国际实用温标,以便能简单、方便、正确地测量温度。1927年拟定了xxx个国际实用温标(ITS──27)。以后随着科学技术不断发展经1948、1960、1990年历次国际计量大会的修订,使国际实用温标日臻完善。国际实用温标的基本思想是:将温度范围分成几个区域,每个区域采用操作起来较为简便的温度计。但它们的刻度均以热力学温标逼近,即在不同的温区有不同的标准公式。这样,在温度计上的刻度不一定是均匀的,但测出的温度却尽可能接近热力学温度。协议性温标随科学技术水平的提高不断改进,以便缩小国际实用温标与热力学温标之间的差距。例如更精确地测定标准温度点的温度;修正内插公式;改进基准温度计等。
90国际温标
代号为ITS──90(InternationalTemperatureScaleof1990)。其要点如下:
①以热力学温标为基本温标。
②热力学温度以符号T表示,单位为开尔文,简称为开,符号K。
③1K的大小定义为水的三相点热力学温度的1/273.16。
④摄氏温度(符号为t)规定由热力学温度导出,其定义为t=T-273.15。摄氏温度的单位称摄氏度,符号为°C,其大小与开尔文相同。
⑤划分四个温度段,指定各温度段的基准温度计:
i)0.65K—5.0K。在此温度段,基准温度计为He、He蒸汽压温度计。
ii)3.0K──24.5561K(氖的三相点)。在此温度段,基准温度计为He、He定体气体温度计。
iii)13.8033K(平衡氢的三相点)──1234.93K(银的凝固点)。在此温度段,基准温度计为铂电阻温度计。
iv)1234.94K以上,根据普朗克辐射定律定义。
ITS──90定义了十七个标准温度点列于下表。
物质状态
温度
T90/Kt90,/℃氦在一,大气压,下的沸点3~5-270,15~-268,15平衡氢的三相点13,8033-259,3467平衡氢在25/26,标准大气压,下的沸点≈17≈-256,15平衡氢在一个标准大气压下的沸点≈20,3≈252,85氖三相点24,5561-248,5939氧三相点54,3584-218,7916氩三相点83,8058-189,3442汞三相点234,3156-38,8344水三相点273,160,01镓熔点302,914629,7646铟凝固点429,7485156,5985锡凝固点505,078231,928锌凝固点692,677419,527铝凝固点933,473660,323银凝固点1234,93961,78金凝固点1337,331064,18铜凝固点1357,771084,62
xxx温度
建立在卡诺循环基础上的理想而科学的温标,将水的冰点(0℃)取为273.15K(K称开尔文,xxx温标的单位),xxx温标的分度与摄氏温标相同。
相关影响
物质温度的定义在常规科学中已经根深蒂固,常规的理论中已经将温度的定义确定在整个物理体系中。更改温度的定义会存在相关科学的结构方法存在变化。
首先影响xxx的是物理本身,这将结束常规物质的一种基本属性,我们将不能采用温度定义的方法对科学一些特定的领域进行描述,比如,描述太阳的温度,我们不能用这样的语言来描述:太阳核心的温度是多少度。再比如对宇宙大爆炸初期的描述,宇宙大爆炸几秒后,温度达到多少多少。不能描述没有物质存在的空间的温度,同样也不能描述孤立粒子的温度。而换之的是对物质存在状态的描述。
影响其次的是化学,我们知道,由于传统的能量定义体系,化学和物理是分开的两个科学体系,化学的描述方法仅用于不同化学物质间的转化,即使现今的量子论,对化学的描述仍然是分开的两个科学系统。从逻辑上来说,不论是化学,还是物理,所描述的对象是统一同一的物质,我们没有理由确定两个科学体系的方法是决然不同的,物理应该包含化学,换句话说,采用物理的方法同样适用于化学的描述,如;解释化学反应过程,解释不同化学物质间的属性。从物理的角度解释化学结构规律。
虽然从量子论诞生的那一天开始,量子论的开创者们就已经开始对量子论扩展到化学的领域做了非常出色的工作,比如轨道理论、不相容原理等用于解释化学的规律,但是由于能量的结构体系是采用能量守恒和转化定律的形式,从而对物质运动变化的关系建立等量关系,这样,就忽略了物质运动变化间真实的相互作用规律,量子论的统一,在物质运动变化的道理上来说,即:物理上来说,不是真实的物理关系,而是赋予物质运动变化间数理的逻辑关系。量子论所探讨的不是物质运动变化的本身,而是纯粹的物理理论与实践的数量关系的对应,站在这样的角度,量子论不能解决微观物质间的真实。沿着现代物理科学的方向,我们很难看到下一步物理科学进一步向前发展的前景,虽然现代物理科学已经获得了非常巨大的成就。温度的概念回归与物质的本身,会建立物质间真实的相互作用途径,在这个意义上来说,化学将属于物理的一部分,虽然我们还没有看到采用何种方法去解释化学的规律,也许元素周期律将是物理中的一个重大问题。OakleySunglasses